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We show that the quantum relaxation process in a classically chaotic open dynamical system is characterized
by a quantum relaxation time scalg. This scale is much shorter than the Heisenberg time and much larger
than the Ehrenfest time;<g® whereg is the conductance of the system and the exponeistclose to%. As
a result, quantum and classical decay probabilities remain close up to \Rluesp(— \/6) similarly to the
case of open disordered systerf$81063-651X97)51712-0

PACS numbeps): 05.45+b, 03.65.Sq

Recently there has been considerable interest in the statigiewpoint of semiclassical correspondence in a regime with
tical properties of the poles of th® matrix in mesoscopic exponentially fast spreading of narrow wave packets due to
quantum dots coupled to conducting metallic legildg€]. The  which the Ehrenfest time scalé] is very short:tg~InN/A,
statistical properties of these poles determine the effectivvhereA is the Liapunov exponent.
lifetime of particles inside the dot and, therefore, are directly In this paper we study the quantum relaxation process in a
related to the conductance fluctuations and current relaxatiofynamical model of quantum chaos where diffusion is
inside the dot. In fact, the problem of current relaxation inc@used by the underlying classical chaotic dynamics. This
diffusive mesoscopic samples connected to leads was a(lgnodel,_lntroduced in Re[.?],_qlescrlbes a kicked rotator Wl_th
dressed long agf8]. Recently, interest in this problem was @P°Sorbing boundary conditiongvhen the momentum is
renewed and new effective methods based on the supersyrlrff‘-rg‘:‘_r than some critical yaIDLeThls open system can be
metry approach have been developed to study the problem ﬁpns!dered as a model of Ilght'trapp'ed in a small I|qU|d drpp-
more detail[4]. For quasi-one-dimensional metallic samplesritom'émsj r?]e{g;r:etgabnoig(:s‘éyéﬂt?’gg;c\t‘;:i raeésc’avg:hfgrt:t?:]e
thg results 01{3’4] predict that th_e current in t.h e_sample, droplet because the refraction angle exceeds the critical value
being proportional to the probabiliti?(t) to stay inside the [8].
sample, will decay, up to a very long time, in an exponential

. : : e ¥ Contrary to the standard kicked rotator modél in
way according to the classical solution of the diffusive equaiyhich the matrix of the evolution operator is unitary, the

tion, which describes the electron dynamics in disorderedsorption breaks the unitarity of the evolution matrix so that
metallic samplesP(t)~exp(-t/t). Heret.~tp=N?D is || eigenvalues move inside the unit circle. In other words,
the diffusion time for a System of siz¢ with diffusion co- each eigenva]ue can be written in the fona= efifz exp
efficientD. (—iE—T/2), whereT" characterizes the decay rate of the
According to Refs[3,4] the strong deviation of quantum eigenstate. In this way absorption corresponds to ideal leads
probability P, from its classical valu® takes place only for  without reflections back to the sample. A similar approach,
t>ty where the quantum probability decays &(t) in which coupling to the continuum was studied on the basis
~exd —gIn?(t/ty)]. Here,ty=1/A(A=1) is the Heisenberg of non-Hermitian Hamiltonians, has been developed and
time, A is the level spacing inside the sample apdty /t.  widely used by Weidenniler et al. (see, for example, Ref.
=E./A is the conductance of the sample with Thouless en{9]).
ergy Ec=1/t;. At time ty, InPy(ty)/InP(ty)~2. As was In our model the quantum evolution of the wave function
pointed out recently [5], less strong deviations is described by the following quantum map:
{In[Py(ty)/P(t))]~1} should take place at a shorter tinig A ) A
~t.Vg due to weak localization corrections according to _:U¢: 75e—iTn2/4e—ik00399—iT“2/4¢, (1)
equations obtained in Reff4]. Up to now these theoretical
prediction§ for open systems have not been checke(_i neiths\fhereﬁ is a projection operator over quantum states the
by numerical computations nor by laboratory experiments, A A )
Also the above results are based on an ensemble averagiffferval (—N/2N/2). Here, the commutator ign, 6]=—i
over disorder and their validity for a quantudynamical and the classical limit correspondske-c, T—0 while the
system that hasne fixedclassical limit is not evident. The classical chaos parametér=kT remains constant. In the

investigation of this problem is also interesting from the classical limit the dynamics is described by the Chirikov
standard map6]:
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FIG. 1. Classical and quantum probability decay Kor7 and FIG. 2. Mesoscopic fluctuations of the quantum relaxation time

N/k=4. The full line shows the fit to the classical decay. Dottedt, for different system size®. The insert shows the statistical
lines give the quantum probability Po(t) for N distribution of fluctuationd, which is close to a log normal distri-
=5001, 20 001, 130 0O@pper, middle, and lower curves, respec- bution of width 0.22. Timd is given in number of kicks.

tively). The lower insert shows the classical probability actually . .
computed fronM =9x 10° orbits and the fit is shown by the dotted For the quantum evolution we choose the corresponding

line. The upper insert shows the classi@all line) and the quan- initial condition in which only the leveh=0 is populated

tum (dotted ling asymptotic decay foN=5001. Timet is givenin ~ &nd we studied numerically the quantum dynaniisfor
number of kicks. different N. We have found that the quantum probability

P4(t) follows the classical one up to a ting, after which it
For the classical computations, in analogy with the quanStarts to decay at a slower reféig. 1). We determined the
tum model, all classical trajectories escaped from the intervluantum relaxation time, by the condition 1P(tg)/P(t)]
(—N/2N/2) are absorbed and never return back. Due to this-0-1, Which corresponds to 10% deviation. The comparison

absorption, in the regime of strong chadé(1) with one of quantum and classical probabilities is shown in Fig. 1.
chaotic componentno islands of stability the classical \-mﬁ é’ﬁgﬁ%ﬁng%é gS;?g:ﬁiig;2'?5\?;%&5;8?%&;&?3;?
robability to stay inside the interval{N/2,N/2) decays . . .
gxponent)i/ally witr{ time'P(t)~exp(—y;)( The ti)me scgle systems(F|g. 2. These f_Iuc.tuatllons are saghsfactory de-

t= Lymtp i determinéd by the diffucsién tir, required scribed by a log normal distributiofinsert in Fig. 2, but a

Cc Cc

. X more detailed analysis is required to determine precisely
to reach the absorbing boundary from the center. Since thg\.ir statistical properties

d|fflé|S|02n rate is D=(An%)/At~k%/2 then y.=E.~1ltp To suppress the fluctuations, we averag@,(t) over dif-
=k*/N<. In order to study the quantum relaxation we fixed ¢,

. 4 o ent system sizes by changifg in a small interval6N
the classical chaos parameter-7 and the ratiN\/k=4.1n  5.4,nq a givemN. Typically we averaged up to 500 different
this way the diffusion timdp is constant whemMN—o and

N values. This allows us to determine the averaged ratio

this allows us to investigate the semiclassical behaviOFR(t):(In[Pq(t)/P(t)D of quantum to classical probability.
Moreover, tp>1, which justifies the diffusive approxima- £q." 5 theseN values the classical dynamics éxactly the

tion.AWeA note also that the systeft) with —N/2<n<N/2 o cince we kept =7 andN/k=4. Then the quantum
and P=1 coupled to open leadsT&0 for [n|>N/2) had  relaxation timet, (averagefiat the 10% level is determined
been studied in Ref10]. The results obtained there showed py the conditionR(ty) =0.1. The dependence @%(t) on
that this model has universal conductance fluctuat{dld time, for differentN, is shown in Fig. 3. Itis clearly seen that
and other properties very similar to mesoscopic metallqu grows as we approach the semiclassical liNit:o. The
samples. . . . rescaling of data foR(t) as a function ot/t, shows a sat-
“The numerical solution of the classical problem was ob5sfactory global scaling behavior of quantum probabilgge
tained by the iterating maf®?) for M=9x10° different ini-  insert in Fig. 3. The dependence of onN is shown in Fig.
tial conditions homogeneously distributed on the lime0. 4 for the semiclassical regime 5@N<130 001. This re-
The results demonstrate a clear exponential deB&)  gime corresponds to a variation of conductaneeN/t, in
=exp(—yt—b) with y.=0.1018821),b=0.17774(5)(see  the interval 56g=<13 000. The fit of numerical data gives a
Fig. 1). This exponential decay shows that fr=7 the  power-law dependence,~0.1%,N® with a~0.41. This
phase space is completely chaotic without any island of stayower remains the same for the 5% deviation leig). 4).
b|l|ty Even W|th SUCh a h|gh number Of Ol’bitS, the CIaSSicaI Here we propose a qua”tative exp|anation @fvalue
computations allow us to obtadirectly the probabilityP(t)  pased on the fact that in the open system the physics is af-
with 10% accuracy only up to the levét~5x10"8 (t fected not by the level spaciny but by the distribution of
~165). This limitation is due to statistical errors appearingpoles of the scattering matr&that describes the coupling to
for a finite number of trajectories. In spite of this, the decaythe leads. These poles are located in the complex energy
rate y. can be found with very high precision, which allows plane and their imaginary parts determine the decay prob-
us to extrapolate the probability behavior to larger times. ability of eigenmodes inside the sample. For our model, the
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01 T poles. However, for finitéN, the separation of poles is finite

- e and can be resolved after a tirhg~1/6. According to this
argument, which is independent of the symmetry and dimen-
sionality of the problem, the deviation between quantum and
classical probabilities will take place at

t4~0.38/t.N=0.38.g, 3

where the numerical coefficient has been extracted from Fig.
4. The theoretical dependen¢®), which corresponds ta
=1/2, is different but close to the numerical valae=0.41.

We attribute this difference to a not sufficiently large value
of \/g. Indeed, neglecting the values witfy< 15, we obtain

0.05

0.0

-0.05

0.1 -0.1

01 0 75 t 150 ‘ 05 1ty 10 a=0.44 for 10% deviation and=0.45 for 5% deviation;
0 50 100 150 200 250 these values are closer to the theoretical predictienD.5.
t The scald, can be also explained in a more standard way

FIG. 3. The average ratifi(t) = (In[P,(t)/P(t)]) as a function of based on weak—locallzatlon correctiofis,4]. Inde_ed, .the
time for different N from N=2500 (left curve to N=129500 duantum interference gives a _decrease of the d_lffus_lon rate
(right curve. The horizontal full line corresponds ®,(t)=P(t). ~ 1/tc=D—D(1—at/ty), wherea is some constartdiffusion
The probabilityP(t) is given by numerical data obtained with ~ Stops at time,). As a result |an/P)~at,§/(tctH)~1 and one
=9x10° orbits fort<70 and by the fit from Fig. 1see textfor  gets Eq.(3).
t>70. The left insert shows the ratio of the numerically computed ~ For very large times, the decay Bfj(t) is determined by
classical probabilityP(t) to the fit function. The deviations from the eigenvaluee=E—iI'/2 with minimal I'=T,,. This
the fit, fort>70, are due to statistical errors related to filiteThe  asymptotic behavior should start from some time sc¢ale
right insert demonstrates the scaling behavioPgft) on the vari-  \yhjch can be estimated in a following way. Similarly to the
ablet/ty, where thety values are determined by conditi®t(t;)  results obtained for complex matrickk?], the eigenvalues
=0.1. Timet is given in number of kicks. should be distributed in a region with a smooth boundary in

the complex plane with approximately constant density of
poles are simply given by the evolution opera{®. The  points forl'~y.. Typically this boundary is parabolic near
eigenvalues oU are distributed in a narrow ring of widte,  the extremal’ close tol";;,. Due to this, the relative num-
inside the unitary circlg7]. This is typical for diffusive ber of eigenvaluesdW in the interval dI" is given by
samples coupled to strongly absorbing leads. As a relult, dW/dI'~ (I —T)/ 2. The total probability in the inter-
complex eigenvalues are homogeneously distributed in aringal ST =T"—-T, is W~(5F/7C)3/2_ The distance between the
of total areaA~E. and the distance between them, in thetwo lowest values of can be estimated from the condition
complex plane, i$~E./N. In the classical limit this spac- W~ 1/N, which gives 6T ~y.N~?3 Then t;~0.4.N?3,
ing goes to zero and one obtains a continuous density okhich is much larger than,. The numerical factor here was

determined from the two lowest values Bffor N=5001:

6.0 I'in=T1=0.065 309 and nearebt,=0.066 203. These val-

300 ues were obtained by direct diagonalization of the maditkix
55 i The rate of the asymptotic decay Bf(t) for N=5001(Fig.
. 200 ,,,.o" 1) agrees, up to six digits accuracy, with the above value of
50 4100 e I"min- We note that a typical size of fluctuations for poles is
. .“_.,,,-* 6 and so we expect thag,—I'yj,~6~1/t,. Since in our
* modelt;<ty and the classical limit is fixed we do not see the

o

Int
=~
N

6 7 8 9101112 27 o 1 guantum deviations discussed in Ref3,4] for t>t,. At

largeg one should average over an exponentially large num-
ber of realizations to observe them.
The largest value of, we have numerically obtaine@t
N=1.3x10°) is tq —254 which corresponds to a probability
Pq(tg)~5X% 102 On the other hand, the classical simula-
tion with M=9x10° orbits allows us to directly compute
5 3 9 10 i1 12 the classicalP(t) with 10% accuracy only up td=165,

InN which corresponds to a probabili§~5x 10" 8. In order to
reach the above level of quantum accuracy one should iterate
M~ 10 orbits, which is already beyond the capability of
present day computers. Moreover, the valuePgfat 10%

The two dotted lines give the fit,=1.90N%4* andt,=1.5N°4" re- accuracy level can be easily increased by orders of magni-
spectively. The full line gives the theoretical prediction with tude since, according to E¢3) tq grows proportionally to
=1/2 (3). The insert shows the 10% data in a semilog scale. Time/N. Instead, for classical Computatlons the number of re-
t is given in number of kicks. quired orbitsM will increase exponenuaIIyR 1/M). This

4.0

35

3.0
6

FIG. 4. Dependence of the quantum relaxation tipen the
system sizé\ = gt,, in logarithmic scale. Points refer to 10% devia-
tion level (R=0.1) while circles refer to 5% deviatiorRE 0.05).
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demonstrates that quantum computations of exponential re;=254 while tg=InNN/A~9.4 (A~InK/2~1.25). This
laxation processes are much more efficient than classicahows that the agreement between quantum and classical re-
simulations with a large number of orbits. The possibility to|axation continues for a time scale that is much larger than
efficiently compute the quantum probabill(t) up to very  the time of wave packet spreading. However, tfort. there
long timest,>1/A allows us to numerically estimate the is no exponential instability in the quantum motif®,14).
measure of the integrable compongnin the phase space of As a result, correlation functions of the typ€(r)
the classical system. Indeed, for>0, the existence of inte- = (sing(t)siné(t+ 7)), which, in the regime of strong chaos,
grable islands leads to an asymptotic power-law decay oflecay exponentially in the classical casd@)r— A7), in the
correlationsP(t) et ~%°[13]. Since in our numerical data the gquantum case decay only during the Ehrenfest time scale up
quantum probability decays exponentially upRg(t)~5  to In|C|~—InN (tge<r<t,). This is similar to what happens in
X 10" ** we assume that the measure of the integrable contlosed(unitary) systems such as the kicked rotafib4]. This
ponent is u<Py(t)~5x10 %x(1=0.1), being much example shows that exponential relaxation is not necessarily
smaller than the relative size of quantum ceM1Here, the related to exponential local instability and positive
error bar gives the average fluctuation Bf(t,=254) ob-  Kolmogorov-Sinai entropy.
tained for 77 values oN. Recently the scalé, has been obtained on the basis of
Also, it is interesting to note that the Ehrenfest time scalerandom matrix theory and supersymmetry for kicked rotator
te is much smaller than the quantum relaxation tige  with random phasefsl5]. The related results for prelocalized
tE/tq~InN/\/N<1. For example, foN=1.3x10° we have states in closed systems were discussed in [Ré.

[1] Y.V. Fyodorov and H.-J. Sommers, J. Math. Phg8, 1918 [9] C.H. Lewenkopf and H.A. Weidenmtlar, Ann. Phys.

(1997. (Leipzig) 212, 53 (1991).

[2] P.W. Brouwer, K.M. Frahm, and C.W.J. Beenakker, Phys.[10] F. Borgonovi, |. Guarneri, and L. Rebuzzini, Phys. Rev. Lett.
Rev. Lett.78, 4737(1997). 72, 1463(1994).

[3] B.L. Altshuler, V.E. Kravtsov, and I.V. Lerner, Pisma Zh. [11] B.L. Altshuler, Pis'ma Zh.'Esp. Teor. Fiz.51, 530 (1985
Eksp. Teor. Fiz45, 160(1987 [JETP Lett.45, 199 (1987, [JETP Lett.41, 648 (1985]; P.A. Lee, A.D. Stone, and J.
Zh. Eksp. Teor. Fiz94, 258(1988 [Sov. Phys. JET®7, 795 Fukuyama, Phys. Rev. B5, 1039(1987).

(1988]. . o [12] F. Haake, F. Izrailev, N. Lehmann, D. Saher, and H.-J. Som-

[4] B.A. Muzykantskii and D.E. Khmelansku, Phys. Rev. R, mers, Z. Phys. B8, 359(1992.

5481(1995; cond-mat/9601048inpublished [13] B.V. Chirikov and D.L. Shepelyansky, Physica 8, 395

[5] A.D. Mirlin, B.A. Muzykantskii, and D.E. Khmelnitskii(pri-

o (1984.
vate communication . .
. . . 14] D.L. Sh I ky, Teor. Mat. Fi49, 117 (1 : Ph D
[6] B.V. Chirikov, Les Houches Lecture Serigg, 443, edited by [14] 8 2o§(f§§:§laﬂs y, Teor. Mat. Fia9 (198 ysica

M.-J. Giannoni, A. Voros, and J. Zinn-JustiNorth-Holland,

Amsterdam, 1991 [15] D.V. Savin and V.V. Sokolov, Phys. Rev. %5, 4911(1997%);

[7] F. Borgonovi, |. Guarneri, and D.L. Shepelyansky, Phys. Rev. K. Frahm,ibid. 56, R6237(1997.
A 43, 4517(1991). [16] V.. Falko and K.B. Efetov, Phys. Rev. &, 17 413(1995;J.

[8] J.U. Nickel and A.D. Stone, Natur@.ondor) 385, 45 (1997). V. Fyodorov and A. D. Mirlin,ibid. 51, 13 403(1993.



