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Relaxation process in a regime of quantum chaos
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1Universitàdi Milano, sede di Como, Via Lucini 3, 22100 Como, Italy

2Istituto Nazionale di Fisica della Materia, Unita` di Milano, Via Celoria 16, 20133 Milano, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

4Laboratoire de Physique Quantique, UMR C5626 du CNRS, Universite´ Paul Sabatier, F-31062 Toulouse, France
~Received 11 June 1997!

We show that the quantum relaxation process in a classically chaotic open dynamical system is characterized
by a quantum relaxation time scaletq . This scale is much shorter than the Heisenberg time and much larger
than the Ehrenfest time:tq}ga whereg is the conductance of the system and the exponenta is close to1

2. As
a result, quantum and classical decay probabilities remain close up to valuesP;exp(2Ag) similarly to the
case of open disordered systems.@S1063-651X~97!51712-0#

PACS number~s!: 05.45.1b, 03.65.Sq
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Recently there has been considerable interest in the st
tical properties of the poles of theS matrix in mesoscopic
quantum dots coupled to conducting metallic leads@1,2#. The
statistical properties of these poles determine the effec
lifetime of particles inside the dot and, therefore, are direc
related to the conductance fluctuations and current relaxa
inside the dot. In fact, the problem of current relaxation
diffusive mesoscopic samples connected to leads was
dressed long ago@3#. Recently, interest in this problem wa
renewed and new effective methods based on the super
metry approach have been developed to study the proble
more detail@4#. For quasi-one-dimensional metallic sampl
the results of@3,4# predict that the current in the sampl
being proportional to the probabilityP(t) to stay inside the
sample, will decay, up to a very long time, in an exponen
way according to the classical solution of the diffusive eq
tion, which describes the electron dynamics in disorde
metallic samples:P(t);exp(2t/tc). Here tc;tD5N2/D is
the diffusion time for a system of sizeN with diffusion co-
efficient D.

According to Refs.@3,4# the strong deviation of quantum
probabilityPq from its classical valueP takes place only for
t.tH where the quantum probability decays asPq(t)
;exp@2gln2(t/tH)#. Here, tH51/D(\51) is the Heisenberg
time, D is the level spacing inside the sample andg5tH /tc
5Ec /D is the conductance of the sample with Thouless
ergy Ec51/tc . At time tH , lnPq(tH)/lnP(tH);2. As was
pointed out recently @5#, less strong deviations
$ ln@Pq(tq)/P(tq)#;1% should take place at a shorter timetq

;tcAg due to weak localization corrections according
equations obtained in Ref.@4#. Up to now these theoretica
predictions for open systems have not been checked ne
by numerical computations nor by laboratory experimen
Also the above results are based on an ensemble avera
over disorder and their validity for a quantumdynamical
system that hasone fixedclassical limit is not evident. The
investigation of this problem is also interesting from t
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viewpoint of semiclassical correspondence in a regime w
exponentially fast spreading of narrow wave packets due
which the Ehrenfest time scale@6# is very short:tE; lnN/L,
whereL is the Liapunov exponent.

In this paper we study the quantum relaxation process
dynamical model of quantum chaos where diffusion
caused by the underlying classical chaotic dynamics. T
model, introduced in Ref.@7#, describes a kicked rotator with
absorbing boundary conditions~when the momentum is
larger than some critical value!. This open system can b
considered as a model of light trapped in a small liquid dro
let with a deformed boundary in which the rays, with orbit
momentum less than some critical value, escape from
droplet because the refraction angle exceeds the critical v
@8#.

Contrary to the standard kicked rotator model@6# in
which the matrix of the evolution operator is unitary, th
absorption breaks the unitarity of the evolution matrix so t
all eigenvalues move inside the unit circle. In other wor
each eigenvalue can be written in the forml5e2 i e5exp
(2iE2G/2), where G characterizes the decay rate of th
eigenstate. In this way absorption corresponds to ideal le
without reflections back to the sample. A similar approa
in which coupling to the continuum was studied on the ba
of non-Hermitian Hamiltonians, has been developed a
widely used by Weidenmu¨ller et al. ~see, for example, Ref
@9#!.

In our model the quantum evolution of the wave functi
is described by the following quantum map:

c̄5Ûc5P̂e2 iTn̂2/4e2 ikcosûe2 iTn̂2/4c, ~1!

whereP̂ is a projection operator over quantum statesn in the
interval (2N/2,N/2). Here, the commutator is@ n̂,û #52 i
and the classical limit corresponds tok→`, T→0 while the
classical chaos parameterK5kT remains constant. In the
classical limit the dynamics is described by the Chirik
standard map@6#:

n̄5n1ksinFu1
Tn

2 G , ū 5u1
T

2
~n1 n̄ !. ~2!-
R6233 © 1997 The American Physical Society
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For the classical computations, in analogy with the qu
tum model, all classical trajectories escaped from the inte
(2N/2,N/2) are absorbed and never return back. Due to
absorption, in the regime of strong chaos (K@1) with one
chaotic component~no islands of stability!, the classical
probability to stay inside the interval (2N/2,N/2) decays
exponentially with time:P(t);exp(2gct). The time scale
tc51/gc;tD is determined by the diffusion timetD required
to reach the absorbing boundary from the center. Since
diffusion rate is D5^Dn2&/Dt;k2/2 then gc5Ec;1/tD
5k2/N2. In order to study the quantum relaxation we fix
the classical chaos parameterK57 and the ratioN/k54. In
this way the diffusion timetD is constant whenN→` and
this allows us to investigate the semiclassical behav
Moreover, tD@1, which justifies the diffusive approxima
tion. We note also that the system~1! with 2N/2,n,N/2
and P̂5 1̂ coupled to open leads (T50 for unu.N/2) had
been studied in Ref.@10#. The results obtained there showe
that this model has universal conductance fluctuations@11#
and other properties very similar to mesoscopic meta
samples.

The numerical solution of the classical problem was o
tained by the iterating map~2! for M593109 different ini-
tial conditions homogeneously distributed on the linen50.
The results demonstrate a clear exponential decayP(t)
5exp(2gct2b) with gc50.101882(1),b50.17774(5) ~see
Fig. 1!. This exponential decay shows that forK57 the
phase space is completely chaotic without any island of
bility. Even with such a high number of orbits, the classic
computations allow us to obtaindirectly the probabilityP(t)
with 10% accuracy only up to the levelP̄'531028 ( t̄
'165). This limitation is due to statistical errors appeari
for a finite number of trajectories. In spite of this, the dec
rategc can be found with very high precision, which allow
us to extrapolate the probability behavior to larger times.

FIG. 1. Classical and quantum probability decay forK57 and
N/k54. The full line shows the fit to the classical decay. Dott
lines give the quantum probability Pq(t) for N
55001, 20 001, 130 001~upper, middle, and lower curves, respe
tively!. The lower insert shows the classical probability actua
computed fromM593109 orbits and the fit is shown by the dotte
line. The upper insert shows the classical~full line! and the quan-
tum ~dotted line! asymptotic decay forN55001. Timet is given in
number of kicks.
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For the quantum evolution we choose the correspond
initial condition in which only the leveln50 is populated
and we studied numerically the quantum dynamics~1! for
different N. We have found that the quantum probabili
Pq(t) follows the classical one up to a timetq , after which it
starts to decay at a slower rate~Fig. 1!. We determined the
quantum relaxation timetq by the condition ln@Pq(tq)/P(tq)#
50.1, which corresponds to 10% deviation. The comparis
of quantum and classical probabilities is shown in Fig.
The values oftq , obtained in this way, strongly fluctuat
with changing the system sizeN as is typical for mesoscopic
systems ~Fig. 2!. These fluctuations are satisfactory d
scribed by a log normal distribution~insert in Fig. 2!, but a
more detailed analysis is required to determine precis
their statistical properties.

To suppress the fluctuations, we average lnPq(t) over dif-
ferent system sizes by changingN in a small intervaldN
around a givenN. Typically we averaged up to 500 differen
N values. This allows us to determine the averaged ra
R(t)5^ ln@Pq(t)/P(t)#& of quantum to classical probability
For all theseN values the classical dynamics isexactly the
samesince we keptK57 andN/k54. Then the quantum
relaxation timetq ~averaged! at the 10% level is determine
by the conditionR(tq)50.1. The dependence ofR(t) on
time, for differentN, is shown in Fig. 3. It is clearly seen tha
tq grows as we approach the semiclassical limitN→`. The
rescaling of data forR(t) as a function oft/tq shows a sat-
isfactory global scaling behavior of quantum probability~see
insert in Fig. 3!. The dependence oftq on N is shown in Fig.
4 for the semiclassical regime 500,N<130 001. This re-
gime corresponds to a variation of conductanceg5N/tc in
the interval 50,g<13 000. The fit of numerical data gives
power-law dependencetq'0.19tcN

a with a'0.41. This
power remains the same for the 5% deviation level~Fig. 4!.

Here we propose a qualitative explanation ofa value
based on the fact that in the open system the physics is
fected not by the level spacingD but by the distribution of
poles of the scattering matrixS that describes the coupling t
the leads. These poles are located in the complex en
plane and their imaginary parts determine the decay pr
ability of eigenmodes inside the sample. For our model,

FIG. 2. Mesoscopic fluctuations of the quantum relaxation ti
tq for different system sizesN. The insert shows the statistica
distribution of fluctuationsf , which is close to a log normal distri
bution of width 0.22. Timet is given in number of kicks.
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poles are simply given by the evolution operator~1!. The
eigenvalues ofÛ are distributed in a narrow ring of widthEc
inside the unitary circle@7#. This is typical for diffusive
samples coupled to strongly absorbing leads. As a resulN
complex eigenvalues are homogeneously distributed in a
of total areaA'Ec and the distance between them, in t
complex plane, isd'AEc /N. In the classical limit this spac
ing goes to zero and one obtains a continuous densit

FIG. 3. The average ratioR(t)5^ ln@Pq(t)/P(t)#& as a function of
time for different N from N52500 ~left curve! to N5129 500
~right curve!. The horizontal full line corresponds toPq(t)5P(t).
The probabilityP(t) is given by numerical data obtained withM
593109 orbits for t<70 and by the fit from Fig. 1~see text! for
t.70. The left insert shows the ratio of the numerically compu
classical probabilityP(t) to the fit function. The deviations from
the fit, for t.70, are due to statistical errors related to finiteM . The
right insert demonstrates the scaling behavior ofPq(t) on the vari-
able t/tq , where thetq values are determined by conditionR(tq)
50.1. Timet is given in number of kicks.

FIG. 4. Dependence of the quantum relaxation timetq on the
system sizeN5gtc in logarithmic scale. Points refer to 10% devi
tion level (R50.1) while circles refer to 5% deviation (R50.05).
The two dotted lines give the fittq51.9N0.41 and tq51.5N0.41, re-
spectively. The full line gives the theoretical prediction witha
51/2 ~3!. The insert shows the 10% data in a semilog scale. T
t is given in number of kicks.
g

of

poles. However, for finiteN, the separation of poles is finit
and can be resolved after a timetq;1/d. According to this
argument, which is independent of the symmetry and dim
sionality of the problem, the deviation between quantum a
classical probabilities will take place at

tq'0.38AtcN50.38tcAg, ~3!

where the numerical coefficient has been extracted from
4. The theoretical dependence~3!, which corresponds toa
51/2, is different but close to the numerical valuea50.41.
We attribute this difference to a not sufficiently large val
of Ag. Indeed, neglecting the values withAg,15, we obtain
a50.44 for 10% deviation anda50.45 for 5% deviation;
these values are closer to the theoretical predictiona50.5.

The scaletq can be also explained in a more standard w
based on weak-localization corrections@5,4#. Indeed, the
quantum interference gives a decrease of the diffusion
1/tc}D→D(12at/tH), wherea is some constant~diffusion
stops at timetH). As a result ln(Pq /P)'atq

2/(tctH);1 and one
gets Eq.~3!.

For very large times, the decay ofPq(t) is determined by
the eigenvaluee5E2 iG/2 with minimal G5Gmin . This
asymptotic behavior should start from some time scalet f ,
which can be estimated in a following way. Similarly to th
results obtained for complex matrices@12#, the eigenvaluese
should be distributed in a region with a smooth boundary
the complex plane with approximately constant density
points forG;gc . Typically this boundary is parabolic nea
the extremalG0 close toGmin . Due to this, the relative num
ber of eigenvaluesdW in the interval dG is given by
dW/dG;A(G2G0)/gc

3/2. The total probability in the inter-
val dG5G2G0 is W;(dG/gc)

3/2. The distance between th
two lowest values ofG can be estimated from the conditio
W;1/N, which gives dG;gcN

22/3. Then t f'0.4tcN
2/3,

which is much larger thantq . The numerical factor here wa
determined from the two lowest values ofG for N55001:
Gmin5G150.065 309 and nearestG250.066 203. These val
ues were obtained by direct diagonalization of the matrixU.
The rate of the asymptotic decay ofPq(t) for N55001~Fig.
1! agrees, up to six digits accuracy, with the above value
Gmin . We note that a typical size of fluctuations for poles
d and so we expect thatgc2Gmin;d;1/tq . Since in our
modelt f!tH and the classical limit is fixed we do not see t
quantum deviations discussed in Refs.@3,4# for t.tH . At
largeg one should average over an exponentially large nu
ber of realizations to observe them.

The largest value oftq we have numerically obtained~at
N51.33105) is tq5254, which corresponds to a probabilit
Pq(tq)'5310212. On the other hand, the classical simul
tion with M593109 orbits allows us to directly compute
the classicalP(t) with 10% accuracy only up tot'165,
which corresponds to a probabilityP̄'531028. In order to
reach the above level of quantum accuracy one should ite
M'1014 orbits, which is already beyond the capability
present day computers. Moreover, the value ofPq at 10%
accuracy level can be easily increased by orders of ma
tude since, according to Eq.~3! tq grows proportionally to
AN. Instead, for classical computations, the number of
quired orbitsM will increase exponentially (P̄;1/M ). This
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demonstrates that quantum computations of exponentia
laxation processes are much more efficient than class
simulations with a large number of orbits. The possibility
efficiently compute the quantum probabilityPq(t) up to very
long times tq@1/L allows us to numerically estimate th
measure of the integrable componentm in the phase space o
the classical system. Indeed, form.0, the existence of inte
grable islands leads to an asymptotic power-law decay
correlationsP(t)}t20.5 @13#. Since in our numerical data th
quantum probability decays exponentially up toPq(tq)'5
310212 we assume that the measure of the integrable c
ponent is m,Pq(tq)'53102123(160.1), being much
smaller than the relative size of quantum cell 1/N. Here, the
error bar gives the average fluctuation ofPq(tq5254) ob-
tained for 77 values ofN.

Also, it is interesting to note that the Ehrenfest time sc
tE is much smaller than the quantum relaxation timetq :
tE /tq; lnN/AN!1. For example, forN51.33105 we have
ys

.
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e-
al

of
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e

tq5254 while tE5 lnN/L'9.4 (L' lnK/2'1.25). This
shows that the agreement between quantum and classica
laxation continues for a time scale that is much larger th
the time of wave packet spreading. However, fort.tE there
is no exponential instability in the quantum motion@6,14#.
As a result, correlation functions of the typeC(t)
5^sinu(t)sinu(t1t)&, which, in the regime of strong chaos
decay exponentially in the classical case (lnuCu;2Lt), in the
quantum case decay only during the Ehrenfest time scale
to lnuCu;2lnN (tE!t!tc). This is similar to what happens in
closed~unitary! systems such as the kicked rotator@14#. This
example shows that exponential relaxation is not necess
related to exponential local instability and positiv
Kolmogorov-Sinai entropy.

Recently the scaletq has been obtained on the basis
random matrix theory and supersymmetry for kicked rota
with random phases@15#. The related results for prelocalize
states in closed systems were discussed in Ref.@16#.
tt.
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